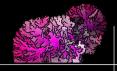


BELLWETHER, LLC

August 20, 2025

Washington, DC

Machines are speaking to us.


We must listen.

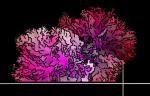
Machine Malfunction

- → Unexpected Downtime
 - → Lost Revenue

Solution

Detect Malfunction

- → Early Intervention
 - → Minimize Revenue Loss


First Market: Transformers

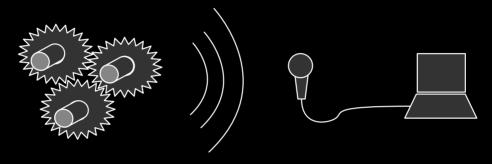
\$3B in yearly damage to substations

30% of transformer failures are unrepairable

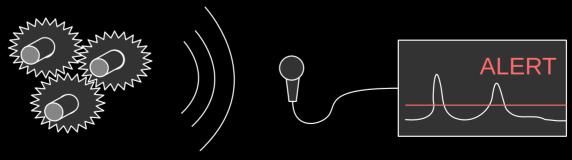
Electric Transformers

Transformers are difficult to replace

Utilities want 3-5 years' warning


We give exactly that

Solution

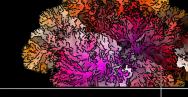

Analyze the acoustic fingerprint

PREPARE

Detect and identify known and unknown sources

DEPLOY

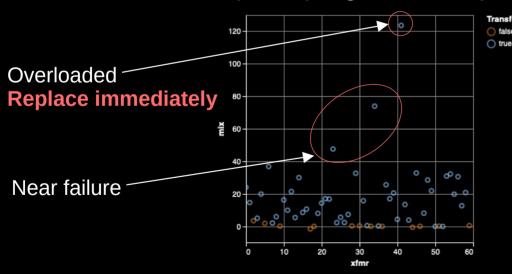
Automated Analysis

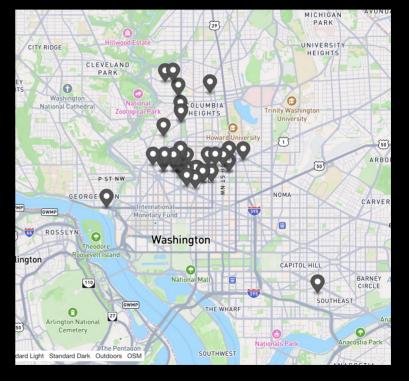

Alerting when:

- → Transformer overloaded
- → Unknown signatures detected
- → **Deviation** in known signature

4" x 3" COTS microcomputer w/ microphone and on-board processing

Current Progress


54 distribution transformers analyzed


Washington, DC

2 transformers - replace soon

1 transformer - replace immediately

Proprietary Signature Analysis

Market: Electric Substations

TAM: \$935,000,000

55k electrical substations

Urban

SAM: \$770M

@ \$20k/substation

Rural

SAM: \$165M

@ \$10k/substation

SOM: \$38.5M

80% of US is urban 5% capture of urban substations

SOM: \$24.8M

20% of US is rural 15% capture of rural substations

Customer Savings

(Per Substation)

\$272k 5 year cost without us

\$90k 5 year cost with us

67% Savings

- **†** Reliability
- **↓** Cost

First Year

Develop catalogue of transformer defects	Month 3
Get 100 recordings of transformers	Month 4
Diagnose transformers according to catalogue	Month 6
Present findings to Pepco Begin partnership	Month 7
Get recordings of substation transformers	Month 12

Business Model Example

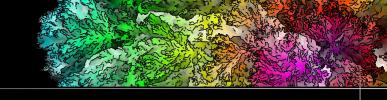
Full integration in 12 years with \$8M ARR

Private utilities:

Government utilities: \$5k/substation/year **\$20k**/substation/year

Year	Substations	Revenue
1	1	\$20k
2	3	\$60k
3	10	\$200k
4	40	\$800k
5	70	\$1.4M
6	100	\$2.0M
7	150	\$3.0M
8	200	\$4.0M
9	250	\$5.0M
10	300	\$6.0M
11	350	\$7.0M
12	400	\$8.0M

Competitive Advantage


Green-field opportunity

- → Smaller transformers are completely unmonitored
 - → Monitoring transformer overloading is **difficult**
 - → Requires invasive metering
- → No one else monitors acoustics
- → Utilities are a natural monopoly

Passive, non-invasive, easy to install

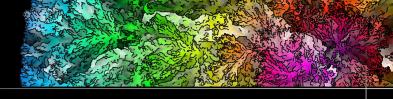
- → Transformers **stay online**
- → No interruption of service

Competition

Competitor

Vibration analyzers

Distributed acoustic sensors


Ultrasound detectors

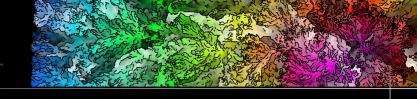
What we improve upon

→ Requires strict installation

- → Fiber-optic cable installation
- **→ \$\$\$**
- → Requires active assessment
- → Unable to detect winding issues
- → No automation

Best Team to Solve This

Hi, I'm Ari


I have

- → 8 years as a US Navy submariner
- → certification as a nuclear engineer under the DoE and Naval Reactors
- → 12,000 hours of acoustic analysis
- → 20 years of programming

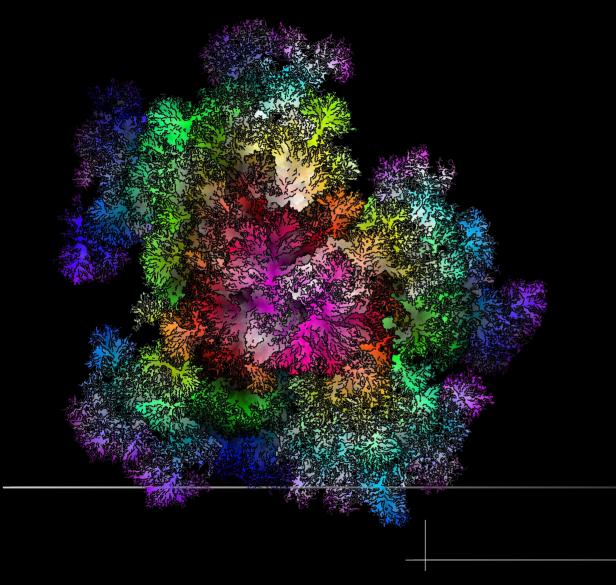
And there's four of me

Needs

Goal is to raise \$2.5M

1.5 years of runway

- → 4 FTEs
- → Improve hardware prototype
- → Improve acoustic analysis GUI
- → Catalogue transformer defects
- → Analyze all transformers in DC


Contact

https://bellwether.llc

+1 (603) 729-7097

1733 20th St NW #205 Washington, DC 20009

Appendix

Appendix: Problem

Major transformer failure = \$ 14 k/MVA

Standard substation = 28 MVA

Material Costs = \$ 392 k

Cost / substation / year = \$56 k

7 days of downtime / major transformer failure 24 hrs of downtime / substation / year, based on 2018 study

Appendix: Problem

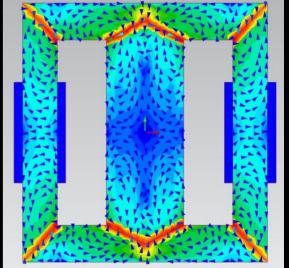
45% of transformers fail in their windings

Status Quo

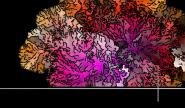
- → Windings come loose
- → Transformer fails
 - → 30% of transformer failures are beyond repair
- → 5 year wait for a new transformer
 - → \$800,000 per transformer
 - → Transformers are in short supply
 - → US created national reserve of transformers

Appendix: Problem

Bellwether Intervention

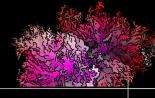

- → Windings come loose
 - → Current diagnosis is through vibration
 - → Better diagnosis through acoustics (2023 paper)
- → Windings are rewound
 - → Cheaper and faster than new transformer
 - → Increases efficiency of transformer
 - → Can be done in 24-48 hours, ~\$15k for labor
- → Transformer lifespan is extended

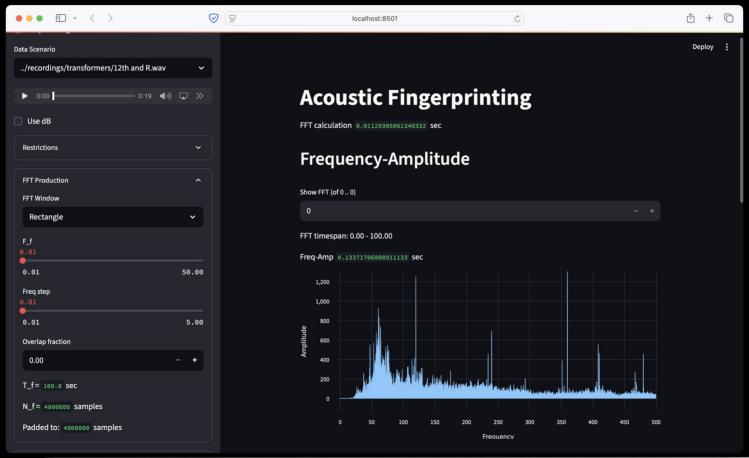
Appendix: Technical Analysis



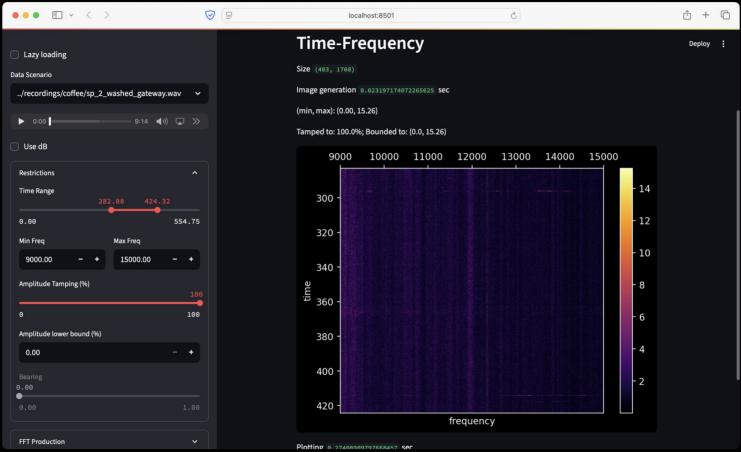
Windings are cause of 45% of transformer failures

- → Loose windings
- → Decreased reluctance in windings
- → Increased vibration of steel core
 - → 2x the frequency, 120 Hz
 - → A_v « B « V, so vibration amplitude is proportional to voltage
 - → Higher amplitude implies the winding loosening
- → Audible detection via contact mic

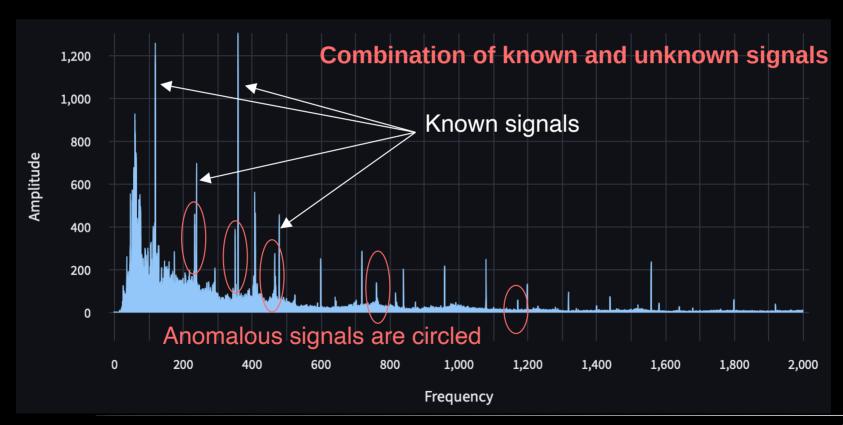



Appendix: Transformer Issues


- → Loose 1° windings
- → Loose 2° windings
- → Loose housing
- → Loose core lamination
- → Overloading
- → Damaged bushings
- → Moisture

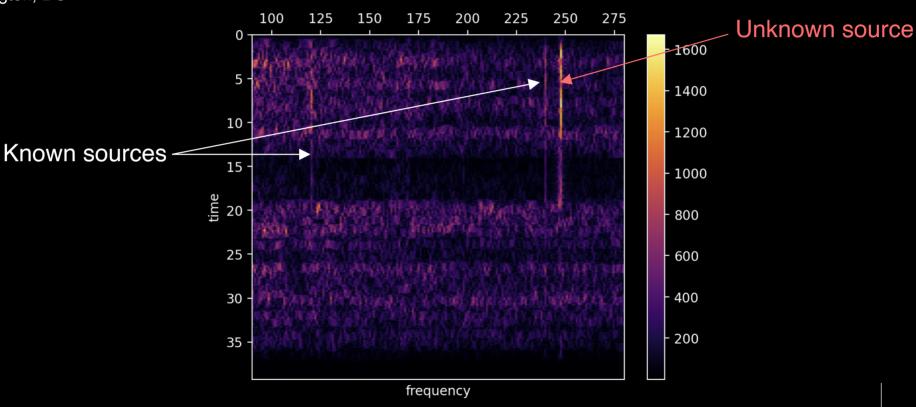

Appendix: Software

Appendix: Software

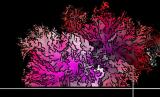


Appendix: Sound Profile

12th and R St NW, Washington, DC

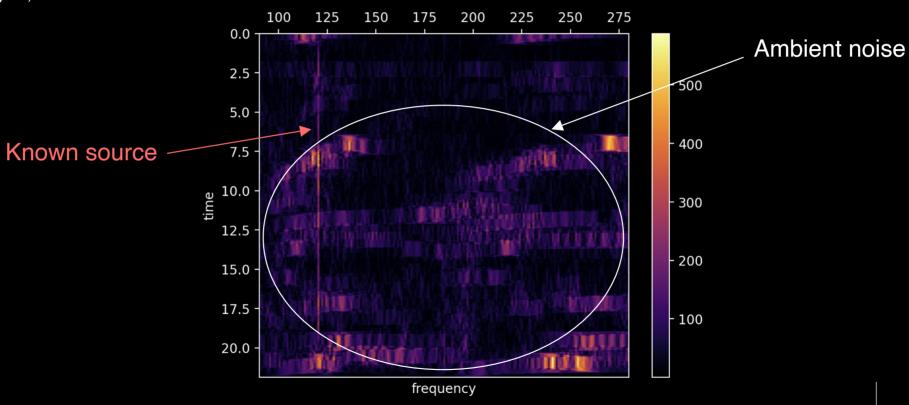


Appendix: Acoustic Analysis



12th and R St NW Washington, DC

Distribution Transformer Tonals

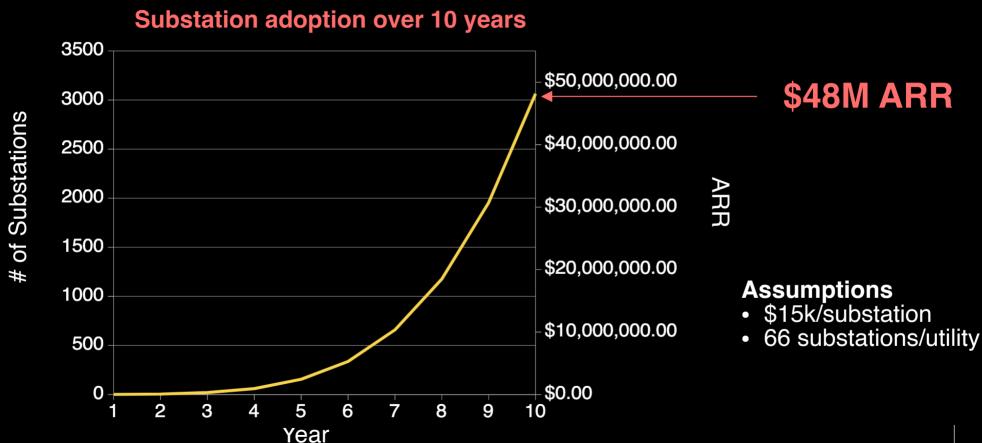


Appendix: Acoustic Analysis

Mt Pleasant and Irving St NW Washington, DC

Distribution Transformer Tonals

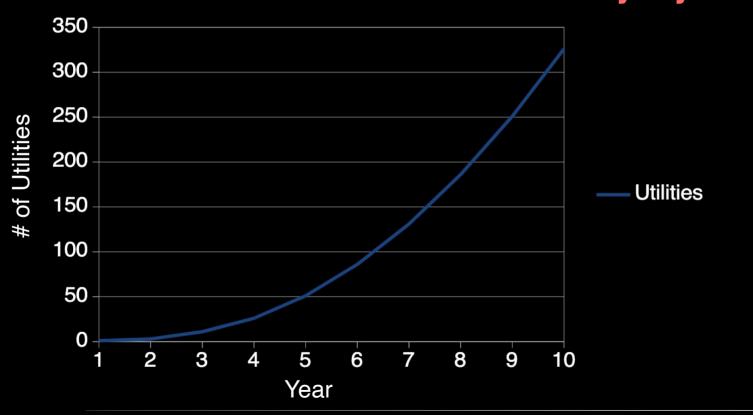
Appendix: Business Model

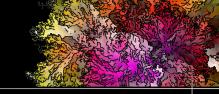


Utility Example

- Month 1: Install equipment; take recordings
 - 2: Analyze recordings
 - 3: Current signatures identified
 - 4: Update automated analyzer
- "Increased core vibrations" → Loose windings
- "Frequency fluctuations" → Unbalanced generation
- "Gunshot" (NC attack 2022) → Substation attack

Appendix: Business Model




Appendix: Business Model

6x customers every 5 years

Appendix: Other Industries

Acoustic advances in one market apply to all markets

Wind turbines (\$355M TAM)

Predictive maintenance

Hydroelectric turbines (\$200M TAM)

Predictive maintenance

Commercial fishing (\$180M TAM)

- Classify species of fish based on their sounds
- Minimize bycatch and increase fishing efficiency

Coffee roasting (\$3M TAM)

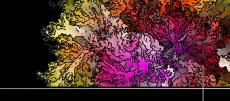
- Identify when coffee beans begin to crack during roasting
- Difficult in loud industrial environments

Appendix: Market (Substations)

- 20% of O&M budget for federal hydroelectric operators is for substations
 - Substation O&M budget is ~\$130k/substation/year
 - Government price would be \$5k/substation
- Assuming same ratio holds for private operators
 - Private operators have significantly more capital per substation
- Rural utilities as a bloc have an outsized representation of federal operators
 - Drives average price down
 - Rural: **\$10k**/substation
 - Urban: **\$20k**/substation

Appendix: Market (Wind)

- 2022: <u>71,000 wind turbines</u>
- Average wind turbine costs \$4.8M
 - 3.5 MW is average capacity
 - \$1,391/kW is average cost/kW for on-shore wind
 - 3500 kW * \$1,391 = \$4.8M
- O&M budget is \$40/kW/year → \$140k/year
- Charge \$5k/turbine


TAM: 71,000 turbines * \$5k/turbine/year = \$355M

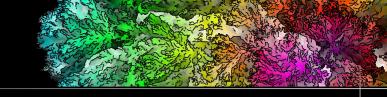
Appendix: Market (Hydroelectric)

- 2024: <u>250 billion kWh</u> generated from hydroelectric dams
 - 28 million kW capacity
 - 10,000 turbines (@ 2800 kW/turbine)
- Each turbine ~\$700k to buy
 - Assume Kaplan turbine, 8m pump head, 42 m³/s
 - Based off of Norwegian hydro cost assessment report
- Charge \$20k/turbine/year
 - 3% of cost

TAM: 10,000 turbines * \$20k/turbine/year = \$200M

Appendix: Market (Fishing)

- 2023: 36,000 registered commercial fishing vessels in US
 - 8.5 billion lbs of catch in 1990
 - 9.8 billions lbs of catch in 2023
 - 31,000 registered vessels in 1990
 - 36,000 vessels in 2023
- Furuno Omni Sonar is most popular
 - \$100k/vessel
- Charge \$5k/year


TAM: 36,000 vessels * \$5k/vessel = \$180M

Appendix: Market (Coffee)

- 2025: 3,000 coffee roasters in the US
- Coffee roasters have declared that they want this
 - Local roaster said they would pay \$1-2k
- Charge \$1k/roaster

TAM: 3,000 roasters * \$1k/roaster = \$3M

Appendix: Competition

Vibration Analysis

- Tractian
- Betavib
- Extech
- Fluke

Distributed Acoustic Sensors

- Prisma Photonics
- OptaSense
- LineVision
- Silixa
- Luna
- Luma Tech

Ultrasound Sensors

- UE Systems
- Ludeca

Acoustic Sensors

Mistras Group

Appendix: Vibration Analysis

Tractian

- Will not divulge pricing; believed to be dependent upon savings
- Good for bearing assessment
- Automated operation

Betavib

- \$35,000 for the total system (+ \$12,000/machine)
- Only does bearing assessment
- Automated operation

Extech VB450

- \$749
- Manual operation

Fluke

- \$15,000 for Fluke 810
- Fragile
- Requires extensive usage manual
- Manual operation

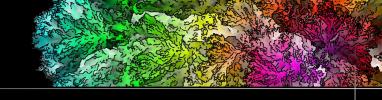
Vaporware

\$\$\$

Limited operation

\$\$\$; Limited operation

Appendix: Distributed Acoustics


Distributed Acoustic Sensing (DAS)

- \$500k \$1M to install
- Low frequency response (< 5 kHz)
- Best for perimeter security

\$\$\$\$\$

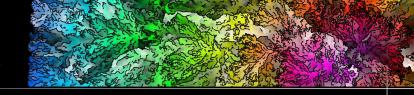
Solves different problem

Appendix: Ultrasound

UE Systems

- > \$15,000 per unit
- Limited analysis
- No data collection
- Manual usage

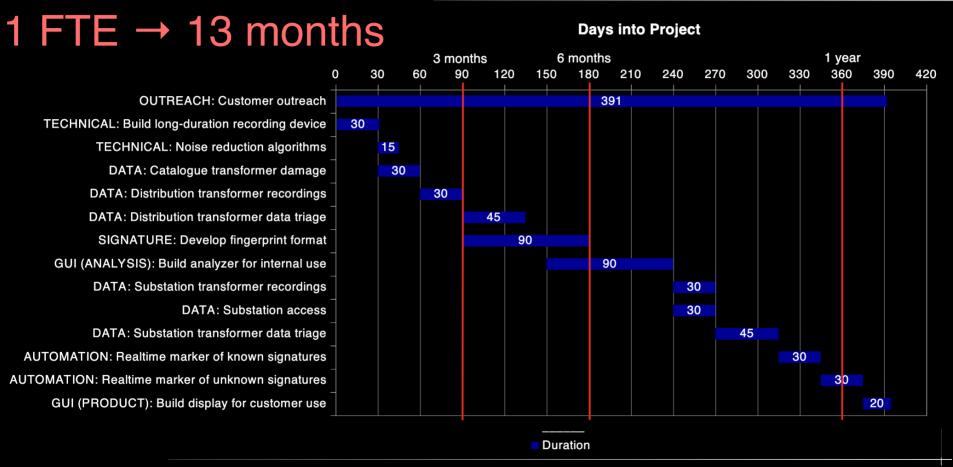
SDT 340

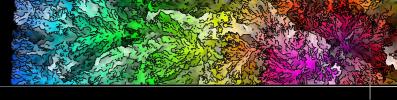

- \$2,290 per unit
- Limited analysis
- No data collection

Mistras Group

- Monitors stray gassing and delamination
- No signature analysis
- Requires experienced operator

Manual operation No signature analysis


Appendix: Budget


Effort	Item	Hours	Cost (\$)
Outreach	Customer outreach	200	\$40,000
Technical	Build long-duration recording device	120	\$24,000
Technical	Noise reduction algorithms	40	\$8,000
Data	Create catalogue of transformer damage	120	\$24,000
Data	Distribution transformer recordings	120	\$24,000
Data	Distribution transformer data triage	80	\$16,000
Signature	Develop fingerprint format	360	\$72,000
GUI (analysis)	Build analyzer for internal use	360	\$72,000
Data	Substation access	-	\$50,000
Data	Substation transformer recordings	120	\$24,000
Data	Substation transformer data triage	80	\$16,000
Automation	Realtime marker of known signatures	120	\$24,000
Automation	Realtime marker of unknown signatures	120	\$24,000
GUI (product)	Build display for customer use	80	\$16,000
Data	500W transformers	-	\$1,000
Cloud	AWS	-	\$24,000
Consultants	Conferring with acoustic experts (50 hrs)	-	\$10,000
Contingency	Contingency funding (10% for cost overruns)	-	\$57,300
Legal	Patents and contracts (60 hrs)	-	\$81,000

Total 1820 hrs \$415,000

Appendix: Budget Timeline

Appendix: Budget Timeline

